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LETTER TO THE EDITOR 

Wetting in the two-dimensional ANNNI model 

T Ala-Nissila, J Amar and J D Gunton 
Physics Department, Temple University, Philadelphia, PA 191 22, USA 

Received 2 September 1985 

Abstract. We demonstrate the existence of a first-order wetting transition in the (2 ,2 )  phase 
of the t.wo-dimensiona1 ANNNI model. The position of the wetting line is studied using 
the interfacial free energy approximation, numerical transfer matrix methods and Monte 
Carlo techniques. Our theoretical calculations are found to be in reasonable agreement 
with results obtained from Monte Carlo simulations. 

Recently, there has been considerable interest (Sega et a1 1985, Rujan et a1 1985, Huse 
and Fisher 1984, Fisher 1984) in the study of wetting transitions in two-dimensional 
systems. In particular, a number of general predictions have been made concerning 
the nature of wetting transitions in ( p  x I )  systems (Huse and Fisher 1984, Fisher 1984). 
However, few detailed studies (Sega et a1 1985, Rujan et a1 1985, Derrida and Schick 
1985) have been carried out for specific systems. In this letter we show the existence 
of a novel wetting transition which occurs in the ANNNI model (Hornreich et a1 1979, 
Selke and Fisher 1980, Villain and Bak 1981, Selke 1981, Beale et a1 1985) within the 
(2,2) phase. We also determine the position of the wetting line by a variety of 
techniques, all of which are in reasonable agreement. We note that the existence of a 
wetting transition can among other things affect the kinetics of domain growth (Ala- 
Nissila et a1 1985) in different regions of the phase diagram. It should also be noted 
that a modified version of the ANNNI model in a field (setting J ,  < 0 in (1) below) has 
been studied as a model of the chemisorbed system O/Pd(llOj (Rujan et a1 1983,1985). 

The Hamiltonian for the ANNNI model is given by 

where Jo, J1, J 2  > 0 and the summation goes over all sites of a square lattice with Ising 
spins s!, = + l .  This Hamiltonian has three different ordered states: a commensurate 
ferromagnetic phase (F), a modulated (2,2) phase and an incommensurate floating ( I )  
phase. In what follows we shall use a standard parametrisation (Selke and Fisher 
1980) of J1 and J2 in terms of Jo where J ,  = (1 - a)Jo  and J2 = aJo. The corresponding 
phase diagram for this model (using this parametrisation) is shown in figure 1. 

The (2,2) state, which consists of an alternating sequence of two ferromagnetic 
layers of up and down spins, has a degeneracy p = 4. Thus, one expects the maximum 
number of elementary walls in the x direction between degenerate phases to be equal 
to p i p  - 1) = 12. However, because our (2,2) phase is a special case of a ( p  x I )  phase 
(with p = 4). there are only thiee physically distinct walls corresponding to the three 
possible ‘phase shifts’ between the domains (Huse and Fisher 1984, Kaski et a1 1985). 

0305-4470/86/020041+ 07$02.50 @ 1986 The Institute of Physics L4 1 



L42 Letter to the Editor 

u=JzlJo 

Figurel. Phase diagram of the A N N N I  model showing the disordered (D) phase, the 
commensurate (2,2) and ferromagnetic (F)  phases and the incommensurate (I) phase. Full 
curves are the phase transition lines from previous MHZ results (the F D  line from Hornreich 
et a1 (1979), the other line from Kroemer and Pesch (1982)). We note that the existence 
of a Lifshitz point (see the ID line, shown schematically) remains controversial. The light 
broken curve indicates our results from (4) as discussed in the text. The heavy broken 
curve shows our theoretical results (6) for the wetting line. The circles are results from 
numerical transfer matrix calculations at low temperature while the crosses are our MC 
results. The points at k , T / J ,  = 0.5 and 1.5 are from simulations on the 128 x 32 system, 
while the others are from the smaller system. Approximate error bars for the MC data are 
also shown. 

These walls are shown in figures 2(a)-(c). The ground state energies for these walls 
are as follows: 

E A l B  = 25, - J ,  = (3 a - 1)JO 

On these grounds we expect the possibility of a wetting transition from a region of 
the phase diagram favouring a [ p - 13 wall (dry) to p - 1 elementary [ 11 walls (wet 
region) where [ n ]  denotes the phase shift in the ground state across the wall (Huse 
and Fisher 1984) (see figure 2 ) .  

In our notation this is equivalent to a wetting transition which may be written 
symbolically as AID+ AlBIC/D where a soft superheavy/light wall becomes wet by 
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Figure2. The three physically different walls in the x direction between the degenerate 
(2,2) phases in the ANNNI model: (a )  heavy/light or AIB walls, ( b )  soft superheavy/light 
or AID walls, ( c )  superheavy/light or AIC walls. Only one type of each wall is shown in 
each case. 

three heavy/light walls. In general this transition will occur when the free energies of 
the walls satisfy the condition (Huse and Fisher 1984) 

f A l D  = 3 f A l B .  (3) 

At T = 0, this clearly occurs at (Y = ft. 
Using the interfacial free energy approximation of Muller-Hartmann and Zittarz 

(1977) (MHZ)  in which the permitted fluctuations of the walls are restricted to kinks 
with no overhangs (SOS approximation), we have calculated the free energies of the 
A/B and AID walls. We note that this approximation is expected to become asymptoti- 
cally correct at temperatures below the critical temperature (as T+O) where only the 
lowest energy excitations are likely$. In this approximation, the free energies are 
obtained from the largest eigenvalue of the transfer matrix linking the position of a 
wall in one column to the next column. Using this approximation we obtain 

f~ l~=Jo(3(Y - 1 ) -  kBT1n(coth(Jo/kBT)) (4) 

f ~ l ~  = Jo( 1 + (Y ) - k~ T In( coth( Jo/ k~ T )  ) . ( 5 )  

(Y = $ + ( k ~ T / 4 J o )  In COth(Jo/kBT). (6) 

and 

Inserting these expressions into (3) then gives 

This equation is plotted as the broken curve in figure 1. We note that for (Y = 1 ,  the 
solution of (6) gives the exact Onsager value ( k B T / J o =  2.269. .  .), as expected, since 
for (Y = 1 the model decouples into two uncoupled (5, = 0, J2 = Jo) layered antiferromag- 
nets. We also note that if we set f A l B = O  we get an estimate for the commensurate- 
incommensurate transition which is lower (see figure 1 )  than that previously obtained 
from the MHZ method (Kroemer and Pesch 1982) (for which the walls were taken to 

t At zero temperature, another possible wetting transition between the elementary walls which occurs 
simultaneously is A/D+AIC(D where the wet walls are a superheavy/light (figure 2(c))  and a heavy/light 
wall (figure 2 ( a ) ) .  However, at finite temperature, we expect the AIC wall to decay into two walls of type 
AIB (AIBIC) due to entropy arguments. Thus, this wetting transition is not expected to be observed. 
$ However, for some simple models (such as the k ing  model) this approximation gives the exact result for 
the critical temperature due to an exact cancellation of the neglected fluctuations (see e.g. Muller-Hartmann 
and Zittartz 1977). 
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be in the opposite direction). Unlike the previous MHZ calculation, our calculation 
takes into account the relevant (AIB) walls which appear in the incommensurate phase. 
(The resulting expressicn for the commensurate-incommensurate transition, while 
giving the exact value at  cy = 1 also has the same asymptotic form in the limit of low 
temperature as the free fermion result (Villain and Bak 1981).) At cy = 1 the wetting 
condition (6) becomes true only for fAiB = fA/D = 0 since the energy of the two walls is 
the same, while the entropy contribution for the two is the same in the SOS approximation 
used. A more accurate determination of the wetting line might be obtained by including 
the possibility of two wetting phases in addition to the elementary walls, as done by 
Selke and Pesch (1982) in the calculation of the commensurate-disorder transition 
line for the 3-state Potts model. 

In order to check these results, we have also performed numerical transfer matrix 
calculations for semi-infinite strips of width M = 8 with the strip width running in the 
x direction (see figure 3) .  In the limit that the strip width M goes to infinity, the free 
energy of wall AIB may be written as 

A 

where A ,  corresponds to the largest eigenvalue of the transfer matrix with a wall (AIB) 
and without a wall (AIA). Similarly the free energy of wall AID may be written as 

I 

L - - _ -  
+ + I +  - - 

- + + - - I - -  + 
- -  

- 
I 

Our results from these numerical transfer matrix calculations are shown in figure 
1. We note that these calculations are only expected to be valid at low temperatures, 

B 
+ t -  

-t - 

A 

( b )  + + 
+ +  

A 
( c l  + + 

+ +  
0 - +  

- +  
Figure 3. Drawing Showing the boundary conditions used in numerical transfer matrix 
calculations with M = 8. The transfer matrix connects successive rows in the infinite y 
direction. (PI) Ground state configuration. ( b )  Boundary conditions in the case of an A/B 
wall. The broken line indicates a wall with a kink for the configuration shown. ( c )  Boundary 
conditions in the case of an AID wall. A wall and a kink are also shown by the broken line. 
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for which the fluctuations of the walls are less than the width of the strip. Nevertheless, 
they are of interest, since unlike the MHZ method thermal fluctuations other than simple 
walls are allowed. We note that for large a the transition temperature obtained from 
the numerical transfer matrix results tend to be high due to the limitation on the size 
of the wall fluctuations imposed by the finite-size strip width. 

In order to check the range of validity of the approximations used above, we have 
also performed Monte Carlo (MC) simulations with standard Glauber spin-flip 
dynamics. Two lattices of sizes 64 x 1 6  and 1 2 8  x 32 (where the smaller dimension in 
each case is the y direction) were used to study the effects of finite size. Averages 
were typically computed by sampling every 1 0 0  MC steps per spin over one run of the 
order of 1 0 5 - 1 0 6 ~ c  steps. The boundaries in the x direction were pinned to the A 
and D phases (with periodic boundary conditions in the y direction) in order to study 
the wetting of the AID wall. Quantities calculated in the MC simulation included the 
length L A I D  of the dry AID wall 

and correspondingly for the wet walls 

where XIY = AIB, B/C or CID. The summations go over the spins s of the N rows of 
the lattice and 8s,xly is one when a wall X(Y is encountered in a row and is otherwise 
zero. In the thermodynamic limit one has in the dry region L A I D =  1,  L A i D = O  while 
in the wet region L A l B =  1 and L A l B = O .  We have also calculated the net adsorption 
width of the B and C domains between the A and D phases 

where s denotes a configuration of four consecutive spins along a row which is in 
either a B or C phase. In the dry region ( W) = 0, while in the wet region ( W) diverges 
in the thermodynamic limit, i.e. we have complete wetting. In addition, we have 
calculated the fluctuations of the adsorption width given by 

( A  W)’= ( W2)  - ( W)’. ( 1 2 )  

This exhibits a peak at the transition point. 
Our results are summarised in figure 1 .  Good agreement is apparent between the 

MHZ results and the MC results up to kBT/Jo= 1 .5 .  At higher temperatures the MC 

results appear to be somewhat above the MHZ results. While finite-size effects were 
seen to be rather small, a comparison of results (for the two system sizes studied) at 
kBT/Jo= 0 . 5 ,  1.0 and 1.5  indicates a slight increase of the wetting temperature (for a 
given a1 with increasing system size. Above kBT/Jo= 1 .5 ,  the transition rapidly 
becomes smeared out by increasing temperature and the location of the wetting line 
(as well as the effects of finite size) become difficult to determine reliably. Figure 4 
shows a typical set of data for LAID, LAlB and ( A  W12 near the wetting transition at 

According to the predictions of Huse and Fisher ( 1 9 8 4 )  the wetting transition in 
two dimensions should be first order for p = 4. In order to study this, we have followed 

kBT/Jo= 1 . 5 .  
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Figure 4. MC results for the 128 x 32 lattice showing the wetting transition at k ,T /J ,  = 1.5. 
Labels are defined in text. 

the scaling of the fluctuations (AW)’/M (where M is the system width in the x 
direction) with system size for three different systems at k B T / J o = 0 . 5 .  While this 
quantity is expected to diverge with increasing system size for a second-order transition 
(such as for the case p = 3) ,  for the case of p = 4 it is expected to vanish in the 
thermodynamic limit. Our observation of the decrease of ( A  W)2/ M with increasing 
system size (the maxima for ( A  W)’/M were about 1.0, 0.6 and 0.2 for 64 x 16, 128 x 32 
and 256 x 64 systems, respectively) is consistent with this prediction. 

This work was supported by NSF Grant no DMR-8312958 and by ONR Grant no 
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